2018年8月21日23:06:54评论1.7K
终极算法 机器学习和人工智能如何重塑世界[The Master Algorithm] 内容简介
算法已在多大程度上影响我们的生活?
购物网站用算法来为你推荐商品,点评网站用算法来帮你选择餐馆,GPS系统用算法来帮你选择最佳路线,公司用算法来选择求职者……
当机器最终学会如何学习时,将会发生什么?
不同于传统算法,现在悄然主导我们生活的是“能够学习的机器”,它们通过学习我们琐碎的数据,来执行任务;它们甚至在我们还没提出要求,就能完成我们想做的事。
什么是终极算法?
机器学习五大学派,每个学派都有自己的主算法,能帮助人们解决特定的问题。而如果整合所有这些算法的优点,就有可能找到一种“终极算法”,该算法可以获得过去、现在和未来的所有知识,这也必将创造新的人类文明。
你为什么必须了解终极算法?
不论你身处什么行业、做什么工作,了解终极算法都将带给你崭新的科学世界观,预测以后的科技发展,布局未来,占位未来!
终极算法 机器学习和人工智能如何重塑世界[The Master Algorithm] 目录
推荐序
序
第一章 机器学习革命
学习算法入门
为何商业拥护机器学习
给科学方法增压
10 亿个比尔•克林顿
学习算法与国家安全
我们将走向何方
第二章 终极算法
来自神经科学的论证
来自进化论的论证
来自物理学的论证
来自统计学的论证
来自计算机科学的论证
机器学习算法与知识工程师
天鹅咬了机器人
终极算法是狐狸,还是刺猬
我们正面临什么危机
新的万有理论
未达标准的终极算法候选项
机器学习的五大学派
第三章 符号学派:休谟的归纳问题
约不约
“天下没有免费的午餐”定理
对知识泵进行预设
如何征服世界
在无知与幻觉之间
你能信任的准确度
归纳是逆向的演绎
掌握治愈癌症的方法
20 问游戏
符号学派
第四章 联结学派:大脑如何学习
感知器的兴盛与衰亡
物理学家用玻璃制作大脑
世界上最重要的曲线
攀登超空间里的高峰
感知器的复仇
一个完整的细胞模型
大脑的更深处
第五章 进化学派:自然的学习算法
达尔文的算法
探索:利用困境
程序的适者生存法则
性有何用
先天与后天
谁学得最快,谁就会赢
第六章 贝叶斯学派:在贝叶斯教堂里
统治世界的定理
所有模型都是错的,但有些却有用
从《尤金•奥涅金》到Siri
所有东西都有关联,但不是直接关联
推理问题
掌握贝叶斯学派的方法
马尔可夫权衡证据
逻辑与概率:一对不幸的组合
第七章 类推学派:像什么就是什么
完美另一半
维数灾难
空中蛇灾
爬上梯子
起床啦
第八章 无师自通
物以类聚,人以群分
发现数据的形状
拥护享乐主义的机器人
熟能生巧
学会关联
第九章 解开迷惑
万里挑一
终极算法之城
马尔科夫逻辑网络
从休谟到你的家用机器人
行星尺度机器学习
医生马上来看你
第十章 建立在机器学习之上的世界
性、谎言和机器学习
数码镜子
充满模型的社会
分享与否?方式、地点如何?
神经网络抢了我的工作
战争不属于人类
谷歌+终极算法=天网?
进化的第二部分
后 记
致 谢
延伸阅读
终极算法 机器学习和人工智能如何重塑世界[The Master Algorithm] 精彩文摘
学习算法入门
每个算法都会有输入和输出:数据输入计算机,算法会利用数据完成接下来的事,然后结果就出来了。机器学习则颠倒了这个顺序:输入数据和想要的结果,输出的则是算法,即把数据转换成结果的算法。学习算法能够制作其他算法。通过机器学习,计算机就会自己编写程序,就用不到我们了。
哇!
计算机会自己编写程序。现在看来这是一个强大的想法,甚至可能有点吓人。如果计算机开始自己编程,那么我们将如何控制它们?我们会看到,人类可以很好地控制它们。可能会有人当即反对,这听起来太美好了,不像真的。当然,编写算法需要智力、创造力、问题解决能力,这些都是计算机没有的。如何把机器学习与魔法区分开来?的确,今天为止,人们能编写许多计算机无法学习的程序。可令人更为惊讶的是,计算机却能学习人们无法编写出来的程序。我们会开车、会辨认字迹,但这些技能都是潜意识发挥出来的,无法向计算机解释这些事情是如何完成的。但是,如果我们把关于这些事情的足够多的例子交给学习算法,该算法会很乐意弄明白怎样独立完成这些事情,这时我们就可以放手让算法去做了。邮局正是通过这种方法来识别邮政编码,自动驾驶汽车也是这样才得以实现在路上跑。
解释机器学习的力量的最好方法,也许就是将其与其他低技术含量的活动进行类比。工业社会,商品由工厂制造,这也意味着工程师必须弄明白商品如何通过零件组装起来、这些零件如何生产等,细到生产原料。这是一项大工程。计算机是人类发明的最复杂的产品,计算机设计、工厂生产、程序运行都涉及大量的工作。还有另外一种方法能让我们得到一些想要的东西:让自然规律去塑造它们。在农业当中,我们播种,确保种子有足够的水分和营养,然后收割成熟的作物。为什么技术不能这样?完全可以,而这也是机器学习的承诺。学习算法是种子,数据是土壤,被掌握的程序是成熟的作物。机器学习专家就像农民,播下种子,灌溉,施肥,留意作物的生长状况,事事亲力亲为,而不是退居一旁。
本文来自青灯黄卷伴你久投稿,不代表电子书资源网立场,如若转载,请联系原作者获取。