OpenCV计算机视觉编程攻略 第3版pdf下载

摘要本书系统介绍OpenCV 3,带领读者由浅入深地了解如何开发计算机视觉程序。作者从构建可以读取并显示图像的简单应用开始,解释和探讨了图形和图像识别的具体方法,对机器学习和目标识别等当前流行的主题也有介绍。 本书主要内容包括: OpenCV库基本结构 通过操作像素处理图...

摘要

本书系统介绍OpenCV 3,带领读者由浅入深地了解如何开发计算机视觉程序。作者从构建可以读取并显示图像的简单应用开始,解释和探讨了图形和图像识别的具体方法,对机器学习和目标识别等当前流行的主题也有介绍。
本书主要内容包括:
OpenCV库基本结构
通过操作像素处理图像
用直方图分析图像
将图像分割成同质区域,并提取有意义的物体
使用图像滤波技术提高图像品质
利用图像几何学,建立同一场景不同视角的对应关系
根据图像的不同视角标定相机
使用机器学习技术检测图像中的行人和物体
根据多个图像重构三维场景

OpenCV计算机视觉编程攻略 第3版 内容简介

本书结合C++和OpenCV全面讲解计算机视觉编程,不仅涵盖计算机视觉和图像处理的基础知识,而且通过完整示例讲解OpenCV的重要类和函数。主要内容包括OpenCV库的安装和部署、图像增强、像素操作、图形分析等各种技术,并且详细介绍了如何处理来自文件或摄像机的视频,以及如何检测和跟踪移动对象。

第3版针对OpenCV新版本进行了修改,调整了很多函数和算法说明,还增加了立体图像深度检测、运动目标跟踪、人脸识别、人脸定位、行人检测等内容,适合计算机视觉新手、专业软件开发人员、学生,以及所有想要了解图像处理和计算机视觉技术的人员学习参考。

OpenCV计算机视觉编程攻略 第3版 目录

第 1章 图像编程入门 1

1.1 简介 1

1.2 安装OpenCV库 1

1.2.1 准备工作 1

1.2.2 如何实现 2

1.2.3 实现原理 4

1.2.4 扩展阅读 5

1.2.5 参阅 6

1.3 装载、显示和存储图像 6

1.3.1 准备工作 6

1.3.2 如何实现 6

1.3.3 实现原理 8

1.3.4 扩展阅读 9

1.3.5 参阅 11

1.4 深入了解cv::Mat 11

1.4.1 如何实现 11

1.4.2 实现原理 13

1.4.3 扩展阅读 16

1.4.4 参阅 17

1.5 定义感兴趣区域 17

1.5.1 准备工作 17

1.5.2 如何实现 17

1.5.3 实现原理 18

1.5.4 扩展阅读 18

1.5.5 参阅 19

第 2 章 操作像素 20

2.1 简介 20

2.2 访问像素值 21

2.2.1 准备工作 21

2.2.2 如何实现 21

2.2.3 实现原理 23

2.2.4 扩展阅读 24

2.2.5 参阅 24

2.3 用指针扫描图像 24

2.3.1 准备工作 25

2.3.2 如何实现 25

2.3.3 实现原理 26

2.3.4 扩展阅读 27

2.3.5 参阅 31

2.4 用迭代器扫描图像 31

2.4.1 准备工作 31

2.4.2 如何实现 31

2.4.3 实现原理 32

2.4.4 扩展阅读 33

2.4.5 参阅 33

2.5 编写高效的图像扫描循环 33

2.5.1 如何实现 34

2.5.2 实现原理 34

2.5.3 扩展阅读 36

2.5.4 参阅 36

2.6 扫描图像并访问相邻像素 36

2.6.1 准备工作 36

2.6.2 如何实现 36

2.6.3 实现原理 38

2.6.4 扩展阅读 38

2.6.5 参阅 39

2.7 实现简单的图像运算 39

2.7.1 准备工作 39

2.7.2 如何实现 40

2.7.3 实现原理 40

2.7.4 扩展阅读 41

2.8 图像重映射 42

2.8.1 如何实现 42

2.8.2 实现原理 43

2.8.3 参阅 44

第3 章 处理图像的颜色 45

3.1 简介 45

3.2 用策略设计模式比较颜色 45

3.2.1 如何实现 46

3.2.2 实现原理 47

3.2.3 扩展阅读 50

3.2.4 参阅 53

3.3 用GrabCut 算法分割图像 53

3.3.1 如何实现 54

3.3.2 实现原理 56

3.3.3 参阅 56

3.4 转换颜色表示法 56

3.4.1 如何实现 57

3.4.2 实现原理 58

3.4.3 参阅 59

3.5 用色调、饱和度和亮度表示颜色 59

3.5.1 如何实现 59

3.5.2 实现原理 61

3.5.3 拓展阅读 64

3.5.4 参阅 66

第4 章 用直方图统计像素 67

4.1 简介 67

4.2 计算图像直方图 67

4.2.1 准备工作 68

4.2.2 如何实现 68

4.2.3 实现原理 72

4.2.4 扩展阅读 72

4.2.5 参阅 74

4.3 利用查找表修改图像外观 74

4.3.1 如何实现 74

4.3.2 实现原理 75

4.3.3 扩展阅读 76

4.3.4 参阅 78

4.4 直方图均衡化 78

4.4.1 如何实现 78

4.4.2 实现原理 79

4.5 反向投影直方图检测特定图像内容 79

4.5.1 如何实现 80

4.5.2 实现原理 81

4.5.3 扩展阅读 82

4.5.4 参阅 84

4.6 用均值平移算法查找目标 85

4.6.1 如何实现 85

4.6.2 实现原理 87

4.6.3 参阅 88

4.7 比较直方图搜索相似图像 88

4.7.1 如何实现 88

4.7.2 实现原理 90

4.7.3 参阅 90

4.8 用积分图像统计像素 91

4.8.1 如何实现 91

4.8.2 实现原理 92

4.8.3 扩展阅读 93

4.8.4 参阅 99

第5 章 用形态学运算变换图像 100

5.1 简介 100

5.2 用形态学滤波器腐蚀和膨胀图像 100

5.2.1 准备工作 101

5.2.2 如何实现 101

5.2.3 实现原理 102

5.2.4 扩展阅读 103

5.2.5 参阅 104

5.3 用形态学滤波器开启和闭合图像 104

5.3.1 如何实现 104

5.3.2 实现原理 105

5.3.3 参阅 106

5.4 在灰度图像中应用形态学运算 106

5.4.1 如何实现 106

5.4.2 实现原理 107

5.4.3 参阅 108

5.5 用分水岭算法实现图像分割 108

5.5.1 如何实现 109

5.5.2 实现原理 111

5.5.3 扩展阅读 112

5.5.4 参阅 114

5.6 用MSER 算法提取特征区域 114

5.6.1 如何实现 114

5.6.2 实现原理 116

5.6.3 参阅 118

第6 章 图像滤波 119

6.1 简介 119

6.2 低通滤波器 120

6.2.1 如何实现 120

6.2.2 实现原理 121

6.2.3 参阅 123

6.3 用滤波器进行缩减像素采样 124

6.3.1 如何实现 124

6.3.2 实现原理 125

6.3.3 扩展阅读 126

6.3.4 参阅 127

6.4 中值滤波器 128

6.4.1 如何实现 128

6.4.2 实现原理 129

6.5 用定向滤波器检测边缘 129

6.5.1 如何实现 130

6.5.2 实现原理 132

6.5.3 扩展阅读 135

6.5.4 参阅 136

6.6 计算拉普拉斯算子 136

6.6.1 如何实现 137

6.6.2 实现原理 138

6.6.3 扩展阅读 141

6.6.4 参阅 142

第7 章 提取直线、轮廓和区域 143

7.1 简介 143

7.2 用Canny 算子检测图像轮廓 143

7.2.1 如何实现 143

7.2.2 实现原理 145

7.2.3 参阅 146

7.3 用霍夫变换检测直线 146

7.3.1 准备工作 146

7.3.2 如何实现 147

7.3.3 实现原理 151

7.3.4 扩展阅读 153

7.3.5 参阅 155

7.4 点集的直线拟合 155

7.4.1 如何实现 155

7.4.2 实现原理 157

7.4.3 扩展阅读 158

7.5 提取连续区域 158

7.5.1 如何实现 159

7.5.2 实现原理 160

7.5.3 扩展阅读 161

7.6 计算区域的形状描述子 161

7.6.1 如何实现 162

7.6.2 实现原理 163

7.6.3 扩展阅读 164

第8 章 检测兴趣点 166

8.1 简介 166

8.2 检测图像中的角点 166

8.2.1 如何实现 167

8.2.2 实现原理 171

8.2.3 扩展阅读 172

8.2.4 参阅 174

8.3 快速检测特征 174

8.3.1 如何实现 174

8.3.2 实现原理 175

8.3.3 扩展阅读 176

8.3.4 参阅 178

8.4 尺度不变特征的检测 178

8.4.1 如何实现 179

8.4.2 实现原理 180

8.4.3 扩展阅读 181

8.4.4 参阅 183

8.5 多尺度FAST 特征的检测 183

8.5.1 如何实现 183

8.5.2 实现原理 184

8.5.3 扩展阅读 185

8.5.4 参阅 186

第9 章 描述和匹配兴趣点 187

9.1 简介 187

9.2 局部模板匹配 187

9.2.1 如何实现 188

9.2.2 实现原理 190

9.2.3 扩展阅读 191

9.2.4 参阅 192

9.3 描述并匹配局部强度值模式 192

9.3.1 如何实现 193

9.3.2 实现原理 195

9.3.3 扩展阅读 196

9.3.4 参阅 199

9.4 用二值描述子匹配关键点 199

9.4.1 如何实现 199

9.4.2 实现原理 200

9.4.3 扩展阅读 201

9.4.4 参阅 202

第 10 章 估算图像之间的投影关系 203

10.1 简介 203

10.2 计算图像对的基础矩阵 205

10.2.1 准备工作 205

10.2.2 如何实现 206

10.2.3 实现原理 208

10.2.4 参阅 209

10.3 用RANSAC(随机抽样一致性)算法匹配图像 209

10.3.1 如何实现 209

10.3.2 实现原理 212

10.3.3 扩展阅读 213

10.4 计算两幅图像之间的单应矩阵 214

10.4.1 准备工作 214

10.4.2 如何实现 215

10.4.3 实现原理 217

10.4.4 扩展阅读 218

10.4.5 参阅 219

10.5 检测图像中的平面目标 219

10.5.1 如何实现 219

10.5.2 实现原理 221

10.5.3 参阅 224

第 11 章 三维重建 225

11.1 简介 225

11.2 相机标定 226

11.2.1 如何实现 227

11.2.2 实现原理 230

11.2.3 扩展阅读 232

11.2.4 参阅 233

11.3 相机姿态还原 233

11.3.1 如何实现 233

11.3.2 实现原理 235

11.3.3 扩展阅读 236

11.3.4 参阅 238

11.4 用标定相机实现三维重建 238

11.4.1 如何实现 238

11.4.2 实现原理 241

11.4.3 扩展阅读 243

11.4.4 参阅 244

11.5 计算立体图像的深度 244

11.5.1 准备工作 244

11.5.2 如何实现 245

11.5.3 实现原理 247

11.5.4 参阅 247

第 12 章 处理视频序列 248

12.1 简介 248

12.2 读取视频序列 248

12.2.1 如何实现 248

12.2.2 实现原理 250

12.2.3 扩展阅读 251

12.2.4 参阅 251

12.3 处理视频帧 251

12.3.1 如何实现 251

12.3.2 实现原理 252

12.3.3 扩展阅读 256

12.3.4 参阅 258

12.4 写入视频帧 258

12.4.1 如何实现 259

12.4.2 实现原理 259

12.4.3 扩展阅读 262

12.4.4 参阅 263

12.5 提取视频中的前景物体 263

12.5.1 如何实现 264

12.5.2 实现原理 266

12.5.3 扩展阅读 266

12.5.4 参阅 268

第 13 章 跟踪运动目标 269

13.1 简介 269

13.2 跟踪视频中的特征点 269

13.2.1 如何实现 269

13.2.2 实现原理 274

13.2.3 参阅 274

13.3 估算光流 275

13.3.1 准备工作 275

13.3.2 如何实现 276

13.3.3 实现原理 278

13.3.4 参阅 279

13.4 跟踪视频中的物体 279

13.4.1 如何实现 279

13.4.2 实现原理 282

13.4.3 参阅 284

第 14 章 实用案例 285

14.1 简介 285

14.2 人脸识别 286

14.2.1 如何实现 286

14.2.2 实现原理 288

14.2.3 参阅 290

14.3 人脸定位 291

14.3.1 准备工作 291

14.3.2 如何实现 292

14.3.3 实现原理 295

14.3.4 扩展阅读 297

14.3.5 参阅 298

14.4 行人检测 298

14.4.1 准备工作 298

14.4.2 如何实现 299

14.4.3 实现原理 302

14.4.4 扩展阅读 304

14.4.5 参阅 308

OpenCV计算机视觉编程攻略 第3版 精彩文摘

本章将介绍 OpenCV的基本要素,并演示如何完成最基本的图像处理任务:读取、显示和存储图像。在开始之前,首先需要安装 OpenCV库。安装过程非常简单,1.2节会详细介绍。

所有的计算机视觉应用程序都涉及对图像的处理,因此 OpenCV提供了一个操作图像和矩阵的数据结构。此数据结构功能非常强大,具有多种实用属性和方法。此外,它还包含先进的内存管理模型,对于应用程序的开发大有帮助。本章最后两节将介绍如何使用这个重要的 OpenCV数据结构。

本文来自玩味不尽投稿,不代表电子书资源网立场,如若转载,请联系原作者获取。

打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
() 0
上一篇 02-13
下一篇 02-13

相关推荐

评论列表

联系我们

在线咨询: QQ交谈

邮件:admin@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信