数据的真相 如何在数字时代做出明智决策pdf下载

数据的真相 如何在数字时代做出明智决策 内容简介市场推广人员在产品包装上重点突出了什么,为什么突出这些数据?为什么年度报告上,有些数据以饼状图的形式出现,而其他数据以柱状图出现?销售预测是基于哪些数据得出的?你的医生说你的病是由某些行为引起的,还是这些行为只...

数据的真相 如何在数字时代做出明智决策 内容简介

市场推广人员在产品包装上重点突出了什么,为什么突出这些数据?

为什么年度报告上,有些数据以饼状图的形式出现,而其他数据以柱状图出现?

销售预测是基于哪些数据得出的?

你的医生说你的病是由某些行为引起的,还是这些行为只是和你的疾病相关?

你知道如果待在一家公司不动,赚的钱会更少吗?

在奥运赛事中,去掉高分和低分再取平均值,对运动员公平吗?

为什么美国大多数总统的任期为1460天或者2921天?

晚睡的人智商会比较高吗?

星巴克旁边的房子升值更快吗?

穿耐克鞋就能像乔丹一样灌篮?

过了保质期的食品到底能不能吃?

我们每天都在刷头条、浏览弹窗,每天都会接触海量的数据信息,这些信息背后隐藏着什么真相?如何识别那些一本正经的胡说八道?

普通人一天大约要接收30G的数据,但大部分人不知道如何正确地解读这些数据。MIT数据学专家在本书中讲述了如何破译每天接触到的数据,将复杂的问题变得更简单和直观。

本书涉及商业、零售、广告、育儿等诸多领域的真实案例,以及时常为人们所误解的数据概念。在本书中,你不仅能够找到如何在信息庞杂的世界中识别数据谎言、挖掘有用信息的方法,而且还能找到凭借该答案迅速做出明智决定的深刻智慧。

数据的真相 如何在数字时代做出明智决策 目录

前言 / IX

序 / XIII

第一章

无处不在的数据:从大数据到小数据

“小数据” / 008

小情境 / 010

成熟的数据接收者 / 011

第二章

对“挑战者号”评估结果的异议:抽样如何影响结果

1986 年 1 月 28 日 / 018

理解样本选择 / 019

我们为何需要抽样? / 023

如果是这样, 结果会如何? / 024

“怪诞” 的科学 / 026

抽样不一定越大就越好 / 028

系上安全带 / 029

我们是第 1 名, 也是第 58 名! / 031

不接受自拍 / 031

选举总统与人口普查 / 032

取其精华, 去其糟粕 / 034

填空 / 035

缺了什么? / 036

做一个成熟的数据抽样接收者 / 037

第三章

红色州为什么变蓝了:平均数及总数——近观概括性统计

当心数据缝隙 / 047

平均数、 中位数和众数哪个更可信? / 049

迈阿密人出生时平均是西班牙裔, 死时是犹太人? /052

为什么副市长会比市长赚得多? / 053

如何评估学生的成绩? / 056

平均值的平均值 / 057

警惕数据中的异类 / 058

去掉高分和低分有道理吗? / 060

总统办公室的离群值? / 061

掩盖信息的代价为 10 亿美元 / 062

你是否比一般人更为优秀 / 063

如何成熟对待数据总和、 平均值、 离群值 / 065

第四章

使用苹果手机的人更聪明?正确理解关联性和因果性

智能手机=聪明人? / 071

星巴克旁边的房子升值更快? / 073

还有什么因素可以解释这件事? / 074

我们有没有让你们觉得无聊? / 077

为什么重要 / 079

穿耐克鞋就能像乔丹一样灌篮? / 079

婴儿、 洗澡水和波尔多红酒 / 081

你在搜索引擎页面排第几? / 082

烤奶酪的性福生活(我们差点将其用作书名) / 083

加利福尼亚的阳光和美属萨摩亚岛上的律师 / 084

不要被媒体人骗了 / 086

了解大脑的工作模式 / 089

抛弃先入为主的观念 / 090

依然重要的一点 / 091

如何成熟地应对关联性和因果性 / 092

第五章

眼见真的为实吗?我们信仰统计学

民意调查 / 101

二手烟是否会致癌? / 102

重要的事 / 103

深呼吸 / 105

抽样大小事关重大 / 106

你有多大把握? / 108

泄露秘密 / 110

如何面对截然相反的结论 / 112

效果显著 / 113

这个研究对我的生活重要吗? / 114

等等,还有呢 / 115

了解自己所看到的是否重要, 从而成为成熟的数据

接收者 / 116

第六章

非洲为什么会变小?歪曲与曲解

不要臆断 / 124

柱状图和饼状图应该怎么画? / 126

微妙的圆 / 133

图表让人看起来更值得信任 / 135

对所有数据一视同仁导致曲解数据 / 136

体会有和仅有的区别 / 138

油表显示油箱为空为什么还能开个几里路? / 139

造假与失误 / 139

错误数据抹掉股市 1 360 亿美元 / 141

不要相信维基百科 / 142

过了保质期的食品能不能吃? / 142

确凿无误的消息也可能被误读 / 144

1/4 磅牛肉汉堡与 1/3 磅牛肉汉堡哪个大? / 145

如何明智地接收被歪曲(或可能被歪曲) 的数据 / 146

第七章

筛选数据需要“摘樱桃法则”:疯狂筛选

筛选数据的“摘樱桃法则” / 156

用统计学的观点如何看祸不单行? / 158

如何解读体育赛事中的统计数据? / 160

房价上涨了还是下跌了? / 161

政客们如何筛选数据? / 164

相信我们——我们在打广告 / 166

你是“摘樱桃的人” ——没错, 就是你 / 168

选出较好的, 留下其他的 / 168

市场营销人员如何筛选数据? / 170

如何识别经过筛选的数据? / 171

第八章

为什么福岛事故是可以预防的:预测未来的技术

明天太阳会照常升起吗? / 179

预知和预测的区分 / 182

出国旅游之前, 请告知金融机构 / 183

正确地看待预测 / 186

抛硬币与“赌徒谬论” / 187

我们身边的预言家 / 190

你知道什么? / 193

民调为什么会出错? / 195

偶然与概率 / 196

心理因素影响预测 / 198

如何成为一个聪明的预测者 / 199

第九章

拨开数据的迷雾:总结

不要轻信头条新闻中的数据 / 204

如何看待工作满意度调查? / 207

出生月份与健康有关系吗? / 209

如何解读关于问题学生的数据? / 212

如何使用房价评估网站的数据? / 214

如何成为一个成熟的数据接收者 / 218

尾声 / 219

词汇表 / 221

注释 / 229

数据的真相 如何在数字时代做出明智决策 精彩文摘

我们来花上一分钟,想一想你在一天刚开始的一两个小时内可能碰到的“小数据”,并对其加以解读:

你睁开眼睛,看到了一天中的第一个数据——闹钟上幽幽亮着的数字。

接收数据:约9字节。

你拿起手机。哪怕在起床前,浏览十几封电子邮件,看几条信息,看一下交通情况,读几条重大新闻也并非难事。

接收数据:约2.1M(1M=约100万字节)。

你走进浴室,站上体重秤,秤上的读数表明你昨晚不该吃比萨。

接收数据:约3字节。

本文来自止步投稿,不代表电子书资源网立场,如若转载,请联系原作者获取。

打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
() 0
上一篇 02-13
下一篇 02-13

相关推荐

评论列表

联系我们

在线咨询: QQ交谈

邮件:admin@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信